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This is joint work with Francesc Perera.

In this talk we'll:

e define a Riesz type interpolation property for the Cuntz
semigroup W (A) and prove that it is satisfied in the case
when A has the ideal property.

e find characterizations of the ideal property in terms of
the Cuntz semigroup (and several more in the stable,
purely infinite case).

e define " comparison’ and prove comparison results for
classes of C*-alg. A with the ideal property (including
situations when A is an AH alg. with the ideal property).



Elliott’s Program:
Classify sep., nuclear C*-alg. by discrete invariants in-
cluding K-theory.

Counterexamples (in the simple case):

e Rgrdam

e Toms : used the Cuntz semigroup to distinguish sim-
ple, nuclear C*-alg. which cannot be distinguished by
the conventional Elliott invariant.

The Cuntz semigroup W(.):

eabc AT :a 2 bif 3{x,} C A such that a = lim z,bx’.

n—oo
(Cuntz)

e a,bc My(A)T: aZbifa3bin M,(A) for some n such
that a,b € M,,(A).



eabc M (AT :a~bifa=zbandb=a (a and b Cuntz
equivalent.)

e W(A), the Cuntz semigroup of A, is defined by:

W(A) ;= My(A)T/ ~={(a) : a € Ms(A)T}

e W(A) = a positively ordered abelian semigroup when
equipped with the relations:

(a) + ) = (a®b), (a) < B = a=b abe My(A)T.

(Coward-Elliott-Ivanescu, Crelle's Journal 2008):
Cu(A) =EW(ARK) :

e closed under suprema of increasing sequences
Cu(.):

e sequentially continuous



Conjecture (Toms-Winter, 2007):

Let A = C*-alg. + unital + sep. 4+ simple + non-
elementary + nuclear . T.F.A.E.:

1. A = finite nuclear dimension;

2. A

Z-stable (i.e., AZ AR Z);

3. A = strict comparison of positive elements (i.e.,
whenever a,b € AT satisfy d-(a) < d.(b), VT € T(A),
then a X b).

Important:

Extend " comparison” to the non-simple case (e.g., to

the ideal property case) and prove appropriate " compar-
ison” results.



Definition (Kirchberg-Rardam):
A C*-alg. A is said to be purely infinite if:

(1) A has no characters (or, equivalently, no non-zero
abelian quotients), and

(2) Va,b € AT such that a € AbA = I{z,} C A such that

a= lim z bx, (i.e., a 3b).
n—oo
Remark:

The study of purely infinite C*-alg. was motivated by
Kirchberg's classification of the sep., nuclear C*-alg.
that tensorially absorb the Cuntz algebra Oy up to sta-
ble isomorphism by an ideal related K K-theory.



Definition:

A C*-alg. A is said to be an AH algebra, if A is the
inductive limit C*-alg. of:

¢

¢1,2 ¢2,3 n—1.n ¢7L,n+1

A1—>A2—>A3&>---

with A, = @f":l Pn,iM[n,i](C(Xn,i>)Pn,i, where the local
spectra X,,; = finite, connected CW complexes, t,, [n,i] €
N and each P,; € P(Mp, 1(C(Xn:)))-



The ideal property
Definition:

A C*-alg. A is said to have the ideal property (i.p.) if
each (closed, two-sided) ideal of A is generated (as an
ideal) by its projections.

Some remarks and results:
e A = simple 4+ unital = A = i.p.
e RR(A)=0= A= .p.

e (Sierakowski): Let (A, G, a) be a C*-dynamical system,
where G = discrete amenable group and the action of
G on Ais free. Then A =i.p. = C*(G,A,a) = i.p.

e (P.-Phillips): Let a: G — Aut(A) be an action of a
finite group on A with the Rokhlin property. Then A =
i.p. = C*(G,A, o) = i.p.

e (Cuntz-Echterhoff-Li): If R is a ring of integers in a
number field = the semigroup C*-alg. Cf(R x R*) =
i.p. (4 purely infinite + RR(C*(R x R*)) # 0)



e (K. Stevens): Classification of a certain class of Al
alg. + i.p.

e (P.): Classification of the AH alg. + i.p. 4+ s.d.g., up
to a shape equivalence.

e (P.): Several characterizations of the i.p. for an arbi-
trary AH alg.

e (P.): If A= AH alg. + i.p. + s.d.g. Then:
(1) sr(4) =1;
(2) Ko(A) = Riesz group + weakly unperforated (in the

sense of Elliott).

e (Gong-Jiang-Li-P.): If A = AH alg. 4+ i.p. 4+ no
dim. growth. = A can be rewritten as an AH alg. with
(special) local spectra of dim < 3.



e (P-Rgrdam, J.F.A. 2000): i.p. ® i.p. # i.p. (even in
the sep. case). If at least one of the " factors” is exact,
then we have "equality”.

e (P.-Rgrdam, Crelle's Journal 2007): Let A
+ sep. + purely infinite. T.F.A.E.:

C*-alg.

(1) A=ip,;

(2) Prim(A) = a basis of compact-open sets.

e (P.-Rgrdam, Crelle's Journal 2007): Let A = C*-alg.
+ sep. T.F.A.E.:

(1) AR O = i.p.;
(2) RR(A® O2) = 0;

(3) Prim(A) = a basis of compact-open sets.



A RIESZ TYPE INTERPOLATION PROPERTY
FOR W(.) AND THE IDEAL PROPERTY

Definition (P.-Perera):

Let A = C*-alg. We say that the Cuntz semigroup
W(A) has the weak Riesz interpolation by projections
property if:

Va;,bi € Mx(A)T such that (a;) < (b;) (in W(A4)), 1 <
1,7 <2 and Ve > 0,3p € P(M(A)) and m € N such that
we have (in W(A)):

((ai—2)1) < () < miby), 1 <iyj <2

Theorem (P.-Perera):

Let A = C*-alg. 4 i.p. Then, W(A) = weak Riesz
interpolation by projections property.

Lemma (P.-Perera):

Let A = C*-alg., let I be an ideal of A that is generated
(as an ideal) by P(I) and let a € AT.

(i) If a € I, then Ve > 0,dp € P(Mx(A)) such that
(a — e)+ 2 p, where p = a finite direct sum of

projections of I.

(ii) Vg € P(AaA),dn € N such that ¢ S a® 1,.
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Proof of the Theorem. Let a;,b; € My (A)T such that
(a;) < (bj), 1 <1i,7 < 2. We may suppose that a;,b; €
At 1 <3< 2. Lete>0. Note that since a; < a1 + ao,
1 <1< 2, aresult of Rgrdam implies that:

(a;) < (a1 + a2)

for: = 1,2. Then, by another result of Rgrdam, for our
e > 0,49 > 0 such that:

((ai—e)4) <((c—=68)4),1 <i< 2, (1)
where ¢ := a1 +a2. Since (a;) < (b;),1 < 4,57 <2, we have
that c € Ab;jA,1 <j<2,ie. cel:= AbjAN AbyA. Note
that since A= i.p. and I = ideal of A = I is generated
(as anideal) by P(I). Then, by the above Lemma = for
our § > 0,3p € P(M~(A)) such that p = a finite direct
sum of projections of I and dm € N such that:

((e=38)4) < (p) <m(b;), 1 <j<2 (2)
Finally, (1) and (2) imply that:

((ai —€)4) < (p) <m(b;),1 <4, <2,

which ends the proof.
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CHARACTERIZATION OF THE IDEAL PROP-
ERTY IN TERMS OF W(.)

Theorem (P.-Perera):

Let A = C*-alg. T.F.A.E.:
(i) A=1i.p.;

(ii) Va;,b; € AT such that {(a;) < (b;), 1 <i,5 < 2 and
Ve > 0, dp € P(Mx(A)) and dm € N such that
((ai —e)4) < (p) <m(b;), 1 <4,j<2andp=a
finite direct sum of projections of A;

(i) Ya € AT and Ve > 0,3p € P(Mx(A)) and m € N

such that ((a —e)4+) < (p) < m(a) and p = a finite
direct sum of projections of A.
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A SPECIAL CASE

Theorem (P.-Perera):

Let A = C*-alg. 4+ purely infinite + stable. T.F.A.E.:
(i) A=1i.p.;

(ii) Va € AT, 3 {p,} C P(A) such that {(a) = SU§<pn> (in
W(A));

(iii) Ya € AT, I{qn} C P(A) such that {{(g,)} is increas-
ing in W(A) and {(a) = SUNIO<qn> (in W(A));

ne

(iv) Va € AT, we have that AaA = U,>11,, where {I,,} is
an increasing sequence of ideals of A and each I,
is generated (as an ideal) by a single projection.

13



Proposition (P.-Perera):

Let A = (C*-alg. <+ purely infinite 4+ i.p. and let

a € AT = Ip,} C P(Ms(A)) such that {{p,)} is an in-

creasing sequence in W(A) and (a) = sup{p,n) (in W(A)).
neN

Remark (P.-Perera):

(i) Note that if A = C*-alg. + purely infinite = W (A)
= Riesz interpolation property. The same conclu-
sion holds for the semigroup V(A) consisting of
the Murray-von Neumann equivalence classes [p]
of projections in My (A).

Indeed, let a;,b; € My (A)T be such that (a;) <
(bj),1 <i,7 <2 (in W(A)). We may assume that
a;,b; € AT, 1 <i<2. Then, for all 4, j:

(a;) < (a1 + a2) < (a1) + (a2) < 2(b;) < (bj) .

(V non-zero positive element of a purely infinite
C*-alg. is properly infinite).

(ii) For A = C*-alg., denote by:

Wyi(A) :={{a) € W(A) |a =0 or prop. inf. in M(A)}.

Then the same argument as in (i) shows that W,,;(A)
= subsemigroup of W (A) with Riesz interpolation.

With this language, a theorem of Kirchberg-Rgrdam
can be rephrased by saying that:

e A = purely infinite & W(A) = W,(A).
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COMPARISON OF POSITIVE ELEMENTS AND
THE IDEAL PROPERTY

e A dimension function on a C*-alg. A is an additive or-
der preserving function d : W(A) — [0,c0]. We can also
regard d as a function My (A)T — [0, 0] that respects
the rules d(a ®b) = d(a) + d(b) and a 2 b = d(a) < d(b)
for all a,b € My (A)T.

e Define DF(A) := the set of all dimension functions
on a C*-alg. A.

e A dimension function d on A is said to be lower semi-
continuous if d(a) = supd((a —e¢)y) for all a € My (A)T.
>0

e Let A = unital C*-alg. A (normalized) quasitrace on
A ia a function 7 : A — C satisfying:

(i) =(1)=1;

(i) 0 < 7(zx*) = 7(x*x), for all x € A;

(iii) 7(a+ib) = 7(a) +ir(b), for all a,b € Ag;
(iv) 7 is linear on abelian sub-C*-alg. of A;

(v) 7 extends to a function from M,(A) to C satisfying
(1)-(iv).

e Define QT(A) := the set of all (normalized) qua-
sitraces on A. This notion was introduced by Blackadar-
Handelman.
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e Given 7 € QT (A) one may definea map d, : My (A)T —
[0, o] by:

d-(a) = lim 7(a'/™)
n—oo

Note that in fact d, takes only real values: d,(Ms(A)T) C
[0, 00).

e Blackadar and Handelman showed that d, = lower
semicontinuous dimension function on A. Note that for
all p e P(Mx(A)) we have that d.(p) = 7(p).

Definition A (P.-Perera):

A unital C*-alg. A such that QT (A) # () is said to have
weak strict comparison if it has the property that a 2 b
whenever a,b € M, (A)T satisfy the inequality:

d(a) < d(b),Vvde EU{f € DF(A) < E: f(b) =1}

where E :={d, : 7€ QT(A)}.
Definition (P.-Perera):

A unital C*-alg. A such that QT(A) # 0 is said to
have strict comparison of projections if p 3 g whenever
p,q € P(Ms(A)) satisfy the inequality:

7(p) < 7(q),VT € QT (A).

16



Theorem A (P.-Perera):

Let A = C*-alg. + unital 4+ i.p. 4+ strict comparison of
projections 4+ finitely many extremal quasitraces. Let
a,b € M, (A)T such that:

d:(a) < d;(b),VYT € QT(A).
Then Ve > 0,dm € N such that:

(a—e)y Zb®1,,.

Remark (Rgrdam):

Let a,b € AT. T.F.A.E.:

(1) Ve > 0,3m € N such that (a —e)+ 2b® 1,;
(2) a € AbA.

Corollary A (P.-Perera):

Let A = unital + AH alg. + i.p. 4 finitely many
extremal tracial states. Let a,b € M, (A)™T such that:

d:(a) < d;(b),VT € T(A).
Then Ve > 0,dm € N such that:

(a—€)+jb® 1,,.
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Definition:

A positive ordered abelian semigroup W (in particular,
the Cuntz semigroup of a C*-algebra) is said to be
almost unperforated if Vx,y € W and Vm,n € N with
nr <my and n >m = x < y.

Theorem B (P.-Perera):

Let A = C*-alg. 4+ unital 4+ i.p. 4+ strict comparison of
projections + finitely many extremal quasitraces. As-
sume that W(A) = almost unperforated. Then A =
weak strict comparison.

Theorem C (P.-Perera):

Let A = AH alg. —+ unital 4+ i.p. 4 finitely many
extremal tracial states. Assume that W(A) = almost
unperforated. Then A = weak strict comparison.
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Theorem D (P.-Perera):

Let A = AH alg. —+ unital + i.p. —+ finitely many
extremal tracial states and let B = unital 4+ simple +
infinite dimensional AH alg. 4 no dimension growth
+ a unique tracial state. Then A® B = weak strict
comparison.

Proof. Observe first that since A, B = i.p. and A (or
B) = exact, it follows that A B = i.p. (use, e.g., a
result of P.-Rgrdam). On the other hand, by a result of
Toms-Winter, B = Z-stable, that is B = B® Z, where
Z is the Jiang-Su algebra. Hence the unital AH alg.
with the ideal property A ® B is Z-stable, i.e. AQ B =
(A® B) ® Z, and then a result of Rgrdam = W (A ® B)
= almost unperforated. Note that if T(B) = {0} =
T(A® B) ={r®0c : 7€ T(A)} and since A = finitely
many extremal tracial states = A ® B = finitely many
extremal tracial states. Now, the fact that AQ B = weak
strict comparison follows from the previous Theorem.
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Remark (P.-Perera):

We may say that a unital C*-alg. A with QT (A) # (
has almost weak strict comparison if A satisfies all the
conditions in the definition of weak strict comparison
(Definition A), with the only difference that the condi-
tion:

(*) d(a) < d(b),Vd € E

is replaced by the new condition:

(%) Jeo > 0 s.t. d(a) <d((b—¢e0)y),VdE E,

with E as in Definition A above (of course, we still
request that d(a) < d(b),Vd € {f € DF(A) N E : f(b) =
1}).

In the proof of Theorem A we showed, in particular, that
in the case when a unital C*-alg. A = finitely many ex-
tremal quasitraces, then (%) = (x*). Therefore, in this
case, if A = almost weak strict comparison = A = weak
strict comparison. Note that if we drop the condition
that the C*-alg. A = finitely many extremal quasitraces
(tracial states), the conclusions of Theorem A and of
Corollary A remain true if we replace in their hypothe-
ses condition (%) by condition (xx) as above. Also, it is
easy to see that, if in Theorems B, C and D we drop the
condition that A = finitely many extremal quasitraces
(tracial states) and the condition that B = unique tra-
cial state (in Theorem D), then they remain true if we
replace in their conclusions “weak strict comparison’” by
“almost weak strict comparison’'.
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