The Cuntz semigroup, a Riesz type interpolation property, comparison and the ideal property

Cornel Pasnicu

University of Texas at San Antonio

This is joint work with Francesc Perera.

In this talk we'll:

- define a Riesz type interpolation property for the Cuntz semigroup W(A) and prove that it is satisfied in the case when A has the ideal property.
- find *characterizations* of the *ideal property* in terms of the *Cuntz semigroup* (and several more in the stable, *purely infinite* case).
- define "comparison" and prove comparison results for classes of C^* -alg. A with the ideal property (including situations when A is an AH alg. with the ideal property).

Elliott's Program:

Classify sep., nuclear C^* -alg. by discrete invariants including K-theory.

Counterexamples (in the simple case):

- Rørdam
- Toms: used the Cuntz semigroup to distinguish simple, nuclear C^* -alg. which cannot be distinguished by the conventional Elliott invariant.

The Cuntz semigroup W(.):

- $a, b \in A^+$: $a \lesssim b$ if $\exists \{x_n\} \subset A$ such that $a = \lim_{n \to \infty} x_n b x_n^*$. (Cuntz)
- $a, b \in M_{\infty}(A)^+$: $a \preceq b$ if $a \preceq b$ in $M_n(A)$ for some n such that $a, b \in M_n(A)$.

- $a, b \in M_{\infty}(A)^+$: $a \sim b$ if $a \lesssim b$ and $b \lesssim a$ (a and b Cuntz equivalent.)
- \bullet W(A), the Cuntz semigroup of A, is defined by:

$$W(A) := M_{\infty}(A)^{+} / \sim = \{ \langle a \rangle : a \in M_{\infty}(A)^{+} \}$$

ullet W(A) = a positively ordered abelian semigroup when equipped with the relations:

$$\langle a \rangle + \langle b \rangle = \langle a \oplus b \rangle, \ \langle a \rangle \leq \langle b \rangle \Leftrightarrow a \lesssim b, \ a, b \in M_{\infty}(A)^{+}.$$

(Coward-Elliott-Ivanescu, Crelle's Journal 2008):

$$Cu(A) \cong W(A \otimes \mathcal{K})$$
:

- closed under suprema of increasing sequences Cu(.):
- sequentially continuous

Conjecture (Toms-Winter, 2007):

Let $A = C^*$ -alg. + unital + sep. + simple + nonelementary + nuclear . T.F.A.E.:

- **1.** A = finite nuclear dimension;
- **2.** $A = \mathcal{Z}$ -stable (i.e., $A \cong A \otimes \mathcal{Z}$);
- **3.** A = strict comparison of positive elements (i.e., whenever $a, b \in A^+$ satisfy $d_{\tau}(a) < d_{\tau}(b), \ \forall \tau \in T(A)$, then $a \lesssim b$).

Important:

Extend "comparison" to the *non-simple case* (e.g., to the *ideal property* case) and prove appropriate "comparison" results.

Definition (Kirchberg-Rørdam):

A C^* -alg. A is said to be *purely infinite* if:

- (1) $\cal A$ has no characters (or, equivalently, no non-zero abelian quotients), and
- (2) $\forall a, b \in A^+$ such that $a \in \overline{AbA} \Rightarrow \exists \{x_n\} \subset A$ such that $a = \lim_{n \to \infty} x_n^* b x_n$ (i.e., $a \lesssim b$).

Remark:

The study of purely infinite C^* -alg. was motivated by Kirchberg's classification of the sep., nuclear C^* -alg. that tensorially absorb the Cuntz algebra \mathcal{O}_{∞} up to stable isomorphism by an ideal related KK-theory.

Definition:

A C^* -alg. A is said to be an AH algebra, if A is the inductive limit C^* -alg. of:

$$A_1 \xrightarrow{\phi_{1,2}} A_2 \xrightarrow{\phi_{2,3}} A_3 \xrightarrow{\phi_{3,4}} \cdots \xrightarrow{\phi_{n-1,n}} A_n \xrightarrow{\phi_{n,n+1}} \cdots$$

with $A_n = \bigoplus_{i=1}^{t_n} P_{n,i} M_{[n,i]}(C(X_{n,i})) P_{n,i}$, where the local spectra $X_{n,i}$ = finite, connected CW complexes, $t_n, [n,i] \in \mathbb{N}$ and each $P_{n,i} \in \mathcal{P}(M_{[n,i]}(C(X_{n,i})))$.

The ideal property

Definition:

A C^* -alg. A is said to have the *ideal property* (*i.p.*) if each (closed, two-sided) ideal of A is generated (as an ideal) by its projections.

Some remarks and results:

- $A = \text{simple} + \text{unital} \Rightarrow A = \text{i.p.}$
- $RR(A) = 0 \Rightarrow A = i.p.$
- (Sierakowski): Let (A, G, α) be a C^* -dynamical system, where G = discrete amenable group and the action of G on \widehat{A} is free. Then A = i.p. $\Rightarrow C^*(G, A, \alpha) =$ i.p.
- (*P.-Phillips*): Let $\alpha \colon G \to Aut(A)$ be an action of a finite group on A with the Rokhlin property. Then $A = i.p. \Rightarrow C^*(G, A, \alpha) = i.p.$
- (*Cuntz-Echterhoff-Li*): If R is a ring of integers in a number field \Rightarrow the semigroup C^* -alg. $C_r^*(R \rtimes R^{\times}) =$ i.p. (+ purely infinite + $RR(C_r^*(R \rtimes R^{\times})) \neq 0$)

- (K. Stevens): Classification of a certain class of AI alg. + i.p.
- (P.): Classification of the AH alg. + i.p. + s.d.g., up to a shape equivalence.
- (P.): Several characterizations of the i.p. for an arbitrary AH alg.
- (P.): If A = AH alg. + i.p. + s.d.g. Then:
- (1) sr(A) = 1;
- (2) $K_0(A) = \text{Riesz group} + \text{weakly unperforated}$ (in the sense of Elliott).
- (Gong-Jiang-Li-P.): If A = AH alg. + i.p. + no dim. growth. $\Rightarrow A$ can be rewritten as an AH alg. with (special) local spectra of dim ≤ 3 .

- (*P.-Rørdam*, J.F.A. 2000): i.p. \otimes i.p. \neq i.p. (even in the sep. case). If at least one of the "factors" is exact, then we have "equality".
- (*P.-Rørdam*, Crelle's Journal 2007): Let $A = C^*$ -alg. + sep. + purely infinite. T.F.A.E.:
- (1) A = i.p.;
- (2) Prim(A) = a basis of compact-open sets.
- (*P.-Rørdam*, Crelle's Journal 2007): Let $A = C^*$ -alg. + sep. T.F.A.E.:
- (1) $A \otimes \mathcal{O}_2 = i.p.$;
- (2) $RR(A \otimes \mathcal{O}_2) = 0$;
- (3) Prim(A) = a basis of compact-open sets.

A RIESZ TYPE INTERPOLATION PROPERTY FOR W(.) AND THE IDEAL PROPERTY

Definition (*P.-Perera*):

Let $A = C^*$ -alg. We say that the Cuntz semigroup W(A) has the weak Riesz interpolation by projections property if:

 $\forall a_i, b_i \in M_{\infty}(A)^+$ such that $\langle a_i \rangle \leq \langle b_j \rangle$ (in W(A)), $1 \leq i, j \leq 2$ and $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M_{\infty}(A))$ and $m \in \mathbb{N}$ such that we have (in W(A)):

$$\langle (a_i - \varepsilon)_+ \rangle \leq \langle p \rangle \leq m \langle b_j \rangle, 1 \leq i, j \leq 2.$$

Theorem (*P.-Perera*):

Let $A = C^*$ -alg. + i.p. Then, W(A) = weak Riesz interpolation by projections property.

Lemma (P.-Perera):

Let $A = C^*$ -alg., let I be an ideal of A that is generated (as an ideal) by $\mathcal{P}(I)$ and let $a \in A^+$.

- (i) If $a \in I$, then $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M_{\infty}(A))$ such that $(a \varepsilon)_+ \lesssim p$, where p = a finite direct sum of projections of I.
- (ii) $\forall q \in \mathcal{P}(\overline{AaA}), \exists n \in \mathbb{N} \text{ such that } q \lesssim a \otimes 1_n.$

Proof of the Theorem. Let $a_i, b_i \in M_{\infty}(A)^+$ such that $\langle a_i \rangle \leq \langle b_j \rangle$, $1 \leq i, j \leq 2$. We may suppose that $a_i, b_i \in A^+, 1 \leq i \leq 2$. Let $\varepsilon > 0$. Note that since $a_i \leq a_1 + a_2$, $1 \leq i \leq 2$, a result of *Rørdam* implies that:

$$\langle a_i \rangle \le \langle a_1 + a_2 \rangle$$

for i=1,2. Then, by another result of $R \not ordam$, for our $\varepsilon>0, \exists \delta>0$ such that:

$$\langle (a_i - \varepsilon)_+ \rangle \le \langle (c - \delta)_+ \rangle, 1 \le i \le 2, \tag{1}$$

where $c:=a_1+a_2$. Since $\langle a_i\rangle \leq \langle b_j\rangle, 1\leq i,j\leq 2$, we have that $c\in \overline{Ab_jA}, 1\leq j\leq 2$, i.e. $c\in I:=\overline{Ab_1A}\cap \overline{Ab_2A}$. Note that since A= i.p. and I= ideal of $A\Rightarrow I$ is generated (as an ideal) by $\mathcal{P}(I)$. Then, by the above Lemma \Rightarrow for our $\delta>0, \exists p\in \mathcal{P}(M_\infty(A))$ such that p= a finite direct sum of projections of I and $\exists m\in \mathbb{N}$ such that:

$$\langle (c-\delta)_+ \rangle \le \langle p \rangle \le m \langle b_j \rangle, 1 \le j \le 2$$
 (2)

Finally, (1) and (2) imply that:

$$\langle (a_i - \varepsilon)_+ \rangle \leq \langle p \rangle \leq m \langle b_j \rangle, 1 \leq i, j \leq 2,$$

which ends the proof.

CHARACTERIZATION OF THE IDEAL PROP-ERTY IN TERMS OF W(.)

Theorem (P.-Perera):

Let $A = C^*$ -alg. T.F.A.E.:

- (i) A = i.p.;
- (ii) $\forall a_i, b_i \in A^+$ such that $\langle a_i \rangle \leq \langle b_j \rangle$, $1 \leq i, j \leq 2$ and $\forall \varepsilon > 0$, $\exists p \in \mathcal{P}(M_{\infty}(A))$ and $\exists m \in \mathbb{N}$ such that $\langle (a_i \varepsilon)_+ \rangle \leq \langle p \rangle \leq m \langle b_j \rangle$, $1 \leq i, j \leq 2$ and p = a finite direct sum of projections of A;
- (iii) $\forall a \in A^+$ and $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M_{\infty}(A))$ and $m \in \mathbb{N}$ such that $\langle (a \varepsilon)_+ \rangle \leq \langle p \rangle \leq m \langle a \rangle$ and p = a finite direct sum of projections of A.

A SPECIAL CASE

Theorem (P.-Perera):

Let $A = C^*$ -alg. + purely infinite + stable. T.F.A.E.:

- (i) A = i.p.;
- (ii) $\forall a \in A^+, \exists \{p_n\} \subset \mathcal{P}(A) \text{ such that } \langle a \rangle = \sup_{n \in \mathbb{N}} \langle p_n \rangle \text{ (in } W(A));$
- (iii) $\forall a \in A^+$, $\exists \{q_n\} \subset \mathcal{P}(A)$ such that $\{\langle q_n \rangle\}$ is increasing in W(A) and $\langle a \rangle = \sup_{n \in \mathbb{N}} \langle q_n \rangle$ (in W(A));
- (iv) $\forall a \in A^+$, we have that $\overline{AaA} = \overline{\bigcup_{n \geq 1} I_n}$, where $\{I_n\}$ is an increasing sequence of ideals of A and each I_n is generated (as an ideal) by a single projection.

Proposition (*P.-Perera*):

Let $A = C^*$ -alg. + purely infinite + i.p. and let $a \in A^+ \Rightarrow \exists \{p_n\} \subset \mathcal{P}(M_\infty(A))$ such that $\{\langle p_n \rangle\}$ is an increasing sequence in W(A) and $\langle a \rangle = \sup_{n \in \mathbb{N}} \langle p_n \rangle$ (in W(A)).

Remark (P.-Perera):

(i) Note that if $A = C^*$ -alg. + purely infinite $\Rightarrow W(A)$ = Riesz interpolation property. The same conclusion holds for the semigroup V(A) consisting of the Murray-von Neumann equivalence classes [p] of projections in $M_{\infty}(A)$.

Indeed, let $a_i, b_i \in M_{\infty}(A)^+$ be such that $\langle a_i \rangle \leq \langle b_j \rangle, 1 \leq i, j \leq 2$ (in W(A)). We may assume that $a_i, b_i \in A^+, 1 \leq i \leq 2$. Then, for all i, j:

$$\langle a_i \rangle \leq \langle a_1 + a_2 \rangle \leq \langle a_1 \rangle + \langle a_2 \rangle \leq 2 \langle b_j \rangle \leq \langle b_j \rangle$$
.

(\forall non-zero positive element of a purely infinite C^* -alg. is properly infinite).

(ii) For $A = C^*$ -alg., denote by:

$$W_{pi}(A) := \{ \langle a \rangle \in W(A) \mid a = 0 \text{ or prop. inf. in } M_{\infty}(A) \}.$$

Then the same argument as in (i) shows that $W_{pi}(A)$ = subsemigroup of W(A) with Riesz interpolation.

With this language, a theorem of *Kirchberg-Rørdam* can be rephrased by saying that:

• $A = \text{purely infinite} \Leftrightarrow W(A) = W_{pi}(A)$.

COMPARISON OF POSITIVE ELEMENTS AND THE IDEAL PROPERTY

- A dimension function on a C^* -alg. A is an additive order preserving function $d:W(A)\to [0,\infty]$. We can also regard d as a function $M_\infty(A)^+\to [0,\infty]$ that respects the rules $d(a\oplus b)=d(a)+d(b)$ and $a\precsim b\Rightarrow d(a)\leq d(b)$ for all $a,b\in M_\infty(A)^+$.
- Define DF(A) := the set of all dimension functions on a C^* -alg. A.
- A dimension function d on A is said to be *lower semi-continuous* if $d(a) = \sup_{\varepsilon>0} d((a-\varepsilon)_+)$ for all $a \in M_\infty(A)^+$.
- Let A= unital C^* -alg. A *(normalized) quasitrace* on A is a function $\tau:A\to\mathbb{C}$ satisfying:
- (i) $\tau(1) = 1$;
- (ii) $0 \le \tau(xx^*) = \tau(x^*x)$, for all $x \in A$;
- (iii) $\tau(a+ib) = \tau(a) + i\tau(b)$, for all $a, b \in A_{sa}$;
- (iv) τ is linear on abelian sub- C^* -alg. of A;
- (v) τ extends to a function from $M_n(A)$ to $\mathbb C$ satisfying (i)-(iv).
- Define QT(A) := the set of all (normalized) quasitraces on A. This notion was introduced by Blackadar-Handelman.

• Given $\tau \in QT(A)$ one may define a map $d_{\tau} : M_{\infty}(A)^+ \to [0, \infty]$ by:

$$d_{\tau}(a) = \lim_{n \to \infty} \tau(a^{1/n})$$

Note that in fact d_{τ} takes only real values: $d_{\tau}(M_{\infty}(A)^{+}) \subseteq [0, \infty)$.

• Blackadar and Handelman showed that $d_{\tau} = \text{lower}$ semicontinuous dimension function on A. Note that for all $p \in \mathcal{P}(M_{\infty}(A))$ we have that $d_{\tau}(p) = \tau(p)$.

Definition A (*P.-Perera*):

A unital C^* -alg. A such that $QT(A) \neq \emptyset$ is said to have weak strict comparison if it has the property that $a \lesssim b$ whenever $a, b \in M_{\infty}(A)^+$ satisfy the inequality:

$$d(a) < d(b), \forall d \in E \cup \{f \in DF(A) \setminus E : f(b) = 1\}$$

where $E := \{d_{\tau} : \tau \in QT(A)\}.$

Definition (*P.-Perera*):

A unital C^* -alg. A such that $QT(A) \neq \emptyset$ is said to have *strict comparison of projections* if $p \lesssim q$ whenever $p, q \in \mathcal{P}(M_{\infty}(A))$ satisfy the inequality:

$$\tau(p) < \tau(q), \forall \tau \in QT(A).$$

Theorem A (P.-Perera):

Let $A = C^*$ -alg. + unital + i.p. + strict comparison of projections + finitely many extremal quasitraces. Let $a, b \in M_{\infty}(A)^+$ such that:

$$d_{\tau}(a) < d_{\tau}(b), \forall \tau \in QT(A)$$
.

Then $\forall \varepsilon > 0, \exists m \in \mathbb{N}$ such that:

$$(a-\varepsilon)_+ \lesssim b \otimes 1_m$$
.

Remark (Rørdam):

Let $a, b \in A^+$. T.F.A.E.:

- (1) $\forall \varepsilon > 0, \exists m \in \mathbb{N} \text{ such that } (a \varepsilon)_+ \lesssim b \otimes 1_m;$
- (2) $a \in \overline{AbA}$.

Corollary A (P.-Perera):

Let A = unital + AH alg. + i.p. + finitely many extremal tracial states. Let $a, b \in M_{\infty}(A)^+$ such that:

$$d_{\tau}(a) < d_{\tau}(b), \forall \tau \in T(A).$$

Then $\forall \varepsilon > 0, \exists m \in \mathbb{N}$ such that:

$$(a-\varepsilon)_+ \lesssim b \otimes 1_m$$
.

Definition:

A positive ordered abelian semigroup W (in particular, the Cuntz semigroup of a C^* -algebra) is said to be almost unperforated if $\forall x,y\in W$ and $\forall m,n\in\mathbb{N}$ with $nx\leq my$ and $n>m\Rightarrow x\leq y$.

Theorem B (P.-Perera):

Let $A = C^*$ -alg. + unital + i.p. + strict comparison of projections + finitely many extremal quasitraces. Assume that W(A) = almost unperforated. Then A = weak strict comparison.

Theorem C (P.-Perera):

Let A = AH alg. + unital + i.p. + finitely many extremal tracial states. Assume that W(A) = almost unperforated. Then A = weak strict comparison.

Theorem D (P.-Perera):

Let A = AH alg. + unital + i.p. + finitely many extremal tracial states and let B = unital + simple + infinite dimensional AH alg. + no dimension growth + a unique tracial state. Then $A \otimes B =$ weak strict comparison.

Proof. Observe first that since A, B = i.p. and A (or B) = exact, it follows that $A \otimes B = \text{i.p.}$ (use, e.g., a result of $P.-R \not ordam$). On the other hand, by a result of $Toms\text{-}Winter, \ B = \mathcal{Z}\text{-}stable$, that is $B \cong B \otimes \mathcal{Z}$, where \mathcal{Z} is the Jiang-Su algebra. Hence the unital AH alg. with the ideal property $A \otimes B$ is $\mathcal{Z}\text{-}stable$, i.e. $A \otimes B \cong (A \otimes B) \otimes \mathcal{Z}$, and then a result of $R \not ordam \Rightarrow W(A \otimes B) = almost unperforated. Note that if <math>T(B) = \{\sigma\} \Rightarrow T(A \otimes B) = \{\tau \otimes \sigma : \tau \in T(A)\}$ and since A = finitely many extremal tracial states Now, the fact that $A \otimes B = \text{weak strict comparison follows from the previous Theorem.}$

Remark (P.-Perera):

We may say that a unital C^* -alg. A with $QT(A) \neq \emptyset$ has almost weak strict comparison if A satisfies all the conditions in the definition of weak strict comparison (Definition A), with the only difference that the condition:

$$(*) d(a) < d(b), \forall d \in E$$

is replaced by the new condition:

(**)
$$\exists \varepsilon_0 > 0$$
 s.t. $d(a) < d((b - \varepsilon_0)_+), \forall d \in E$,

with E as in Definition A above (of course, we still request that $d(a) < d(b), \forall d \in \{f \in DF(A) \setminus E : f(b) = 1\}$).

In the proof of Theorem A we showed, in particular, that in the case when a unital C^* -alg. A= finitely many extremal quasitraces, then $(*)\Rightarrow (**)$. Therefore, in this case, if A= almost weak strict comparison $\Rightarrow A=$ weak strict comparison. Note that if we drop the condition that the C^* -alg. A= finitely many extremal quasitraces (tracial states), the conclusions of Theorem A and of Corollary A remain true if we replace in their hypotheses condition (*) by condition (**) as above. Also, it is easy to see that, if in Theorems B, C and D we *drop the condition* that A= finitely many extremal quasitraces (tracial states) and the condition that B= unique tracial state (in Theorem D), then they *remain true* if we *replace* in their conclusions "weak strict comparison" by "almost weak strict comparison".